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Balance laws are derived for the swimming of a deformable body due to prescribed
shape changes and the effect of the wake vorticity. The underlying balances of
momenta, though classical in nature, provide a unifying framework for the swimming
of three-dimensional and planar bodies and they hold even in the presence of
viscosity. The derived equations are consistent with Lighthill’s reactive force theory
for the swimming of slender bodies and, when neglecting vorticity, reduce to the model
developed in Kanso et al. (J. Nonlinear Sci., vol. 15, 2005, p. 255) for swimming in
potential flow. The locomotion of a deformable body is examined through two sets of
examples: the first set studies the effect of cyclic shape deformations, both flapping and
undulatory, on the locomotion in potential flow while the second examines the effect
of the wake vorticity on the net locomotion. In the latter, the vortex wake is modelled
using pairs of point vortices shed periodically from the tail of the deformable body.

1. Introduction
The net locomotion of a deformable body submerged in an infinite volume of fluid

depends critically on the dynamic coupling between the prescribed shape deformations
and the unsteady motion of the surrounding fluid. A mathematical description of this
coupling at finite Reynolds numbers would require taking into account the detailed
effects of viscosity which are primarily manifested in the dynamics of the thin shear
layers around the body. These layers remain attached over parts of the body and
separate at the body tail (or fins when accounted for in the model) to create vortical
structures whose subsequent dynamics is also influenced by viscosity. Mid-body
separation and vortex shedding have also been reported (see, e.g. Zhu et al. 2002).

For swimming at large Reynolds numbers due to transverse shape deformations
(e.g. Carangiform and Thunniform swimming), the viscous effects may be modelled
using a purely inviscid theory (see Wu 1961, 1971a; Katz & Weihs 1978, 1979;
Jones 2003; Shukla & Eldredge 2007). Separation, vortex shedding and vortex wakes
can be modelled by imposing an unsteady Kutta condition and including a vortex
sheet, that is, a surface across which the tangential component of the fluid velocity
is discontinuous but the normal component is continuous, originating from the tail
of the waving body. The Kutta condition requires the velocity and pressure to be
continuous and bounded at the trailing edge. The problem of resolving the vortex
shedding and vortex sheet dynamics for large shape deformations is quite challenging
even for prescribed swimming motions of the solid body (see Jones 2003; Shukla &
Eldredge 2007).

† Email address for correspondence: kanso@usc.edu
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In the classical work of Wu on the swimming of a planar (infinite depth) deformable
plate, the author used the assumption of small shape amplitudes which enables one to
solve for the trailing vortex sheet analytically and investigate the problem of optimum
shape deformations in the sense of minimizing the energy lost in creating the trailing
wake (see Wu 1961, 1971a, b). Lighthill, on the other hand, studied the swimming
of a slender body due to large amplitude deformations (see, e.g. Lighthill 1975)
and avoided solving for the complex wake dynamics by considering the momentum
balance in a control volume containing the deformable body and bounded by a plane
attached at its trailing edge. The studies of both Lighthill and Wu focused mainly on
the swimming at constant velocity with the efficiency of long range cruising in mind.
Later, Weihs (1972, 1973) modified Lighthill’s slender body theory for applications to
turning as well as sudden starting/stopping maneuvers.

One of the main objectives of this paper is to derive balance laws for the swimming
of a deformable body in an inviscid fluid in response to prescribed (actively controlled)
shape deformations and the effect of the wake vorticity. The underlying balances of
momenta, though classical in nature, provide a unifying framework for the swimming
of three-dimensional and planar bodies and they may hold even in the presence
of viscosity – a fact often overlooked in the literature on swimming. The derived
equations, when applied to the swimming of slender bodies, can be viewed as a
generalization of Lighthill’s ‘reactive’ force theory. When neglecting vorticity, that is,
for swimming in potential flow, the derived equations reduce to the model developed
in Kanso et al. (2005) for the motion of an articulated body in irrotational flow.
This is not a coincidence. In fact, in his analysis of the swimming of an elongated
fish (slender body) at large Reynolds numbers, Lighthill argues that the added or
virtual mass of fluid which acquires momentum through shape changes of the animal
far exceeds the associated animal’s mass and the ‘resistive’ forces due to boundary
layer and vortex shedding. That is, the ‘reactive’ forces (proportional to the added
mass) play a central role in the locomotion of these animals. It is exactly this added
mass effect that we capture in the potential flow models. Note that an algorithm that
isolates the reactive forces in the swimming at the finite Reynolds numbers can be
found in Eldredge (2008).

The derived equations are used to study the effect of cyclic shape changes on the
locomotion of a deformable body in potential flow due to the added mass effect
(no wake). This study differs from the one discussed in Kanso et al. (2005) in which
it considers the swimming of an elastic body as opposed to a system of connected
rigid bodies. This allows one to examine both undulatory and flapping deformations.
Indeed, we prescribe both types of deformations: undulations of the centreline, i.e.
smooth travelling waves similar to those considered in Wu (1961), and flapping,
or piecewise smooth waves of linear form, similar to those considered in Kanso
et al. (2005). Gaits due to such shape changes are numerically simulated using a panel
method (see, e.g. Katz & Plotkin 2001) and their locomotion properties are compared.
In particular, for the flapping deformations, we identify optimal shape trajectories for
which the deformable body achieves maximum displacement and, for the undulatory
deformations, we examine the effect of the wavelength of the travelling waves on the
net displacement.

One of the advantages of the derived balance laws is that they do not impose
a specific approach for modelling the wake. When fast calculations are a priority,
say, when using the model for an online controller on a robotic fish, the wake
can be approximated using classical methods of unsteady aerodynamics in terms
of pretabulated lift and drag coefficients (as done in Weihs 1972, 1973) or can be
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Figure 1. A deformable body B immersed in an infinitely large volume F of an inviscid
and incompressible fluid which is at rest at infinity and undergoing prescribed planar shape
deformations.

computed using a surrogate wake of discrete vortex structures (point vortices or vortex
rings as those employed in Shashikanth et al. 2002, 2008; Borisov & Mamaev 2003;
Kanso & Oskouei 2008; Shashikanth 2006). We follow this approach for studying the
effect of the wake vorticity on the net locomotion. Namely, we model the wake using
pairs of point vortices shed periodically from the tail of the deformable body. If a
more accurate description of the wake is necessary, the shed vorticity can be obtained
by coupling the derived equations to a numerical solver that accurately computes the
wake vorticity (as done in Jones 2003; Shukla & Eldredge 2007 within the perfect
fluid theory or using a numerical solver that accounts for viscosity as in Peskin 2002;
Eldredge 2008). These directions will be pursued in future works.

The organization of this paper is as follows: The problem setting is described in § 2.
The balance laws governing the locomotion of a deformable body due to prescribed
shape changes are derived in § 3. A discussion of the energy transfer during the
swimming process is presented in § 4. The equations governing the motion of a
deformable body in potential flow are derived in § 5. Several examples of swimming
in potential flow are presented in § 6 while swimming due to dipole shedding is
discussed in § 7. The findings of this work are summarized in § 8. In the Appendix,
we tie the balance laws derived in § 3 to Lighthill’s slender body theory.

2. Setting
Consider a planar (infinite depth) deformable body B immersed in an infinitely

large volume F of an inviscid and incompressible fluid which is at rest at infinity; a
two-dimensional cross-section of the body is shown in figure 1. Let the body undergo
prescribed two-dimensional shape deformations, not necessarily small, of the general
form

xshape = xshape(s, t) e1 + yshape(s, t) e2, (2.1)

where xshape and yshape are functions of the arclength s along the boundary ∂B of
a cross-section of the body and time t . The functions xshape and yshape are expressed
with respect to an orthonormal inertial frame {e1,2,3} where {e1, e2} span the plane of
deformations and e3 is the unit normal to this plane. The shape deformations satisfy
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the inextensibility condition (
∂xc

∂sc

)2

+

(
∂yc

∂sc

)2

= 1, (2.2)

where xc and yc denote coordinates of the centreline and sc is the arclength along the
centreline. Also, let shape deformations satisfy the area-preservation condition,

Area=
1

2

∫
∂B

(
xshape

∂yshape

∂s
− yshape

∂xshape

∂s

)
ds = constant for all time t. (2.3)

The shape velocity can be expressed as follows:

vshape =
∂xshape

∂t
e1 +

∂yshape

∂t
e2, (2.4)

or, equivalently,

vshape =

(
∂xshape

∂t

∂xshape

∂s
+

∂yshape

∂t

∂yshape

∂s

)
t +

(
∂yshape

∂t

∂xshape

∂s
− ∂xshape

∂t

∂yshape

∂s

)
n.

(2.5)
Here, (t, n) are the tangential and normal unit vectors to ∂B with n pointing towards
the fluid and are related to (e1, e2) by

t =
∂xshape

∂s
e1 +

∂yshape

∂s
e2, n = − ∂yshape

∂s
e1 +

∂xshape

∂s
e2. (2.6)

This transformation is invertible as long as the boundary deformations are not
degenerate – a condition assumed to hold here. Note that in the presence of a sharp
edge, this transformation is valid everywhere except at the edge where t and n are ill
defined. One would need to consider an open neighbourhood of the sharp edge and
decompose the boundary integrals that arise in § 3 into an integral over the smooth
portion of the body and a second integral in the neighbourhood of the edge.

The net locomotion of the body B is identified with a rotation β about e3 and a
translation (xo, yo) in the {e1, e2} directions, say of the geometric centre of B. The
angular and translational velocities can be expressed in the fixed inertial frame as
β̇ e3 and v = ẋoe1 + ẏoe2 (the dot is used to denote the partial derivative with respect
to time, ∂/∂t).

It is convenient for the development in § 5 to introduce body-fixed coordinates X
which are measured from the body-fixed orthonormal frame {b1,2,3} whose origin
is placed at the geometric centre xo. The axes {b1,2,3} are related to {e1,2,3} via the
proper-orthogonal tensor R,⎛

⎝e1

e2

e3

⎞
⎠ =

⎛
⎝cos β − sinβ 0

sinβ cos β 0
0 0 1

⎞
⎠

︸ ︷︷ ︸
(R)

⎛
⎝ b1

b2

b3

⎞
⎠ . (2.7)

The point transformation from the body to the inertial frame can be represented as

x = RX + xo, (2.8)

where x = x e1 + y e2 and X =X b1 +Y b2, while vectors transform as v = RV . The
angular and translational velocities expressed in the body frame take the form
Ω =Ω b3 (where Ω = β̇) and V =V1b1 +V2b2 (where V1 = ẋo cosβ + ẏo sinβ and
V2 = − ẋo sinβ + ẏo cos β). One could also prescribe the shape deformations with
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respect to the body-fixed frame as X shape = Xshape(s, t)b1 + Yshape(s, t)b2, and write the
shape velocity V shape(= RTvshape) in body frame. The symbol ()T denotes the transpose
operation.

3. Momentum balance
The balance laws are derived based on the following assumptions:
(i) There are no external forces or moments applied on the solid–fluid system.
(ii) The body is massless and the fluid density is normalized to unity.
(iii) The body at all times can maintain its instantaneous shape under the

hydrodynamic pressure loading on its boundary. That is, the net dynamic effect
(if any) of the pressure field on the boundary is always a locomotion (recoil effects
are not accounted for).

(iv) All vorticity in the fluid is confined to the trailing wake. Moreover, vorticity in
the far wake is assumed to decay rapidly enough to ensure convergence of integrals
of vorticity over the infinite fluid domain that may arise.

For planar (two-dimensional) bodies, the balance of linear momentum, or more
precisely impulse, of the body–fluid system reads as (see Saffman 1992)

d

dt

[∮
∂B

x × (n × u) ds +

∫
F

x × ω da

]
=0, (3.1)

where x denotes the position vector with respect to the inertial frame, u denotes the
spatial velocity field of the fluid, ω = ∇ × u is the vorticity of the fluid, da and ds

are standard area and line elements. Similarly, the balance of angular momentum or
impulse about the origin of the inertial frame takes the form

d

dt

[
−1

2

∮
∂B

‖x‖2(n × u) ds − 1

2

∫
F

‖x‖2ω da

]
= 0. (3.2)

The momentum balance laws (3.1)–(3.2) hold in general even in the presence of
viscosity. It is worth noting that, in unbounded two-dimensional flows, the balance
of linear momentum remains true in the presence of viscosity while that of angular
momentum is true only when there is no net circulatory flow at infinity (see Saffman
1992, § § 3.6 and 3.10). In this work, we consider an inviscid and incompressible fluid.
The fluid velocity u can be written using the Helmholtz–Hodge decomposition as
follows:

u = ∇φ + uw = ∇φ + ∇ × ψ. (3.3)

where uw = ∇ ×ψ . The vector potential ψ satisfies �ψ = −ω subject to the boundary
conditions (∇ × ψ) · n = 0 on ∂B and ∇ × ψ = 0 at infinity (ψ is zero in the absence
of vorticity around the body). The potential function φ is harmonic, that is, it is the
solution to Laplace’s equation �φ = 0, subject to impermeable boundary conditions
on ∂B (∇φ · n = normal velocity of the boundary) and the velocity is required to
vanish at infinity. Namely, one has

∂φ

∂n
= (vshape + v + β̇ e3 × x) · n on ∂B, ∇φ = 0 at ∞. (3.4)

Boundary conditions (3.4) are a result of the inviscid fluid assumption. By linearity
of Laplace’s equation, one can write, following Kirchhoff (see Lamb 1932),

φ = β̇ϕβ + ẋoϕx + ẏoϕy + ϕshape, (3.5)
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where ϕβ, ϕx, ϕy are called velocity potentials and are solutions to Laplace’s equation
subject to

∂ϕβ

∂n
= x × n · e3 ,

∂ϕx

∂n
= n · e1 ,

∂ϕy

∂n
= n · e2 on ∂B. (3.6)

The function ϕshape is also harmonic (�ϕshape = 0) and satisfies ∇ϕshape · n = vshape · n
on ∂B. That is, ϕshape is the potential function associated with the shape deformations
only. Clearly, ϕβ , ϕx , ϕy and ϕshape all depend on the instantaneous shape of B.

One can readily verify, on substituting (3.5) into (3.3), employing the resulting
expression for u in (3.1) and (3.2) and using standard vector identities and the
divergence theorem, that (3.1) and (3.2) can be rewritten in the convenient form

F = −
d pshape

dt
− Fw, M = − dπshape

dt
− Mw, (3.7)

where F and M are the reactive forces and moments with which the fluid acts on the
deformable body to cause it to achieve a net locomotion,

F =
d ploc

dt
+

d

dt

∮
∂B

x × (n × uw) ds,

M =
dπloc

dt
− d

dt

[
1

2

∮
∂B
‖x‖2 (n × uw) ds

]
,

(3.8)

with

ploc =

∮
∂B

(β̇ϕβ + ẋoϕx + ẏoϕy)n ds, πloc =

∮
∂B
(β̇ϕβ + ẋoϕx + ẏoϕy)x × n ds. (3.9)

In (3.7), pshape and πshape are the linear and angular momenta imparted to the fluid
due to shape changes,

pshape =

∮
∂B

ϕshapen ds, πshape =

∮
∂B

ϕshape x × n ds. (3.10)

Finally, Fw and Mw denote the rate of change of the linear and angular impulses of
the wake (note that the impulse of the wake depends on both the vortex shedding
and the wake motion),

Fw =
d

dt

∫
F

x × ω da, Mw =
d

dt

[
−1

2

∫
F

‖x‖2ω da

]
. (3.11)

Equations (3.7) govern the motion of the deformable body due to prescribed shape
changes and their interaction with the wake vorticity. The shape momenta ps and πs

can be readily computed for a prescribed shape deformation. To close the model, one
needs to compute Fw and Mw , which represent the contribution of vortex shedding
and wake vorticity to the momentum balance, as well as the terms involving the wake
contribution to F and M in (3.8). This closure can be obtained in a variety of ways
the simplest of which is to consider an irrotational (potential) fluid model. The effect
of the fluid is then completely encoded using the added mass effect and the terms Fw

and Mw are set to zero. This case is discussed in § § 5 and 6. Another approach would
be to model the wake using discrete vortex structures as done in Katz & Weihs (1978,
1979) for a flexible body or in Shashikanth et al. (2002) and Kanso & Oskouei (2008)
for a rigid body interacting with point vortices. This approach is pursued in § 7. If a
more accurate description of the wake is necessary, Fw and Mw can be computed by
coupling (3.7) to a numerical solver that computes the shed vorticity either within the
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Figure 2. Energy transfer during the swimming process (adapted from Wu 1971a).

inviscid model as in Shukla & Eldredge (2007) or by using a numerical solver that
accounts for viscosity as in Peskin (2002) or Eldredge (2008). These directions will be
pursued in future studies.

We conclude this section by noting that (3.7) hold for a three-dimensional
deformable body assumed to undergo planar locomotion due to planar shape
deformations. Indeed, the kinematic description of the shape deformations in (2.1)
and the inextensibility constraint (2.2) are equally applicable to a two-dimensional
body as well as a three-dimensional body (not necessarily axisymmetric) undergoing
planar deformations. That is, this kinematic description is valid for two-dimensional
and three-dimensional flows. In three-dimensional, the arclength s parameterizes the
cross-sectional boundary in the plane of motion. Of course, a second parameter in
the transverse direction is needed to fully describe the surface boundary of the body.
The area-preservation constraint (2.3) should be interpreted as a volume-preservation
constraint and the boundary line integral should be replaced by a boundary surface
integral. To arrive at (3.7), one follows a similar approach to the one presented above
after writing the counterparts of (3.1) and (3.2) in three-dimensional. Namely, one
starts by writing

d

dt

[∮
∂B

x × (n × u) da +
1

2

∫
F

x × ω dv

]
=0,

d

dt

[
−1

2

∮
∂B

‖x‖2(n × u) da − 1

2

∫
F

‖x‖2ω dv

]
=0.

(3.12)

where dv and da are standard volume and area elements. Note that (3.12) differ
from (3.1) and (3.2) only by a factor of half in the linear impulse of the vorticity. The
fact that this factor is missing in the two-dimensional equation can be traced to the
vortex lines not being closed in two-dimensional flows. For more details (see Saffman
1992, chapter 3).

4. Energy consideration
From an energy perspective, the entire swimming process begins with the

biochemical energy of the fish (or the chemical energy of a robotic swimmer)
which is converted into mechanical energy for maintaining the body deformations.
The mechanical energy is then transformed into hydrodynamic energy. Part of the
hydrodynamic energy is spent in useful work, used to swim, and the remaining part is
energy lost in the flow wake (see figure 2). Under the idealized conditions employed
in this paper (no dissipation and negligible elastic effects), the mechanical energy
necessary to maintain the shape deformations is equal to the hydrodynamic energy
input into the fluid. The aim of this section is to discuss the transfer of hydrodynamic
energy into work used to achieve a net locomotion.

We begin by computing the total kinetic energy of the fluid TF. The kinetic energy
TF is given in spatial representation by

TF =
1

2

∫
F

‖u‖2 da =
1

2

∮
∂B

φ
∂φ

∂n
ds +

1

2

∮
∂B

uw × ψ ds +
1

2

∫
F

ψ · ω da. (4.1)
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The last term in (4.1) denotes the kinetic energy of the wake while the second last term
represents the coupling between the body’s motion and the wake. One can readily
verify, writing φ as in (3.5) and following a standard procedure (see, e.g. Kanso et al.
2005), that the first term in the kinetic energy TF can be rewritten as

1

2

∮
∂B

φ
∂φ

∂n
ds = Tloc + Tcouple + Tshape . (4.2)

In (4.2), one has

Tloc =
1

2
(Ω · πloc + v · ploc), Tcouple = Ω · πshape + v · pshape,

Tshape =
1

2

∮
∂B

ϕshape

∂ϕshape

∂n
ds.

(4.3)

If the prescribed shape deformations are to be maintained, the kinetic energy Tshape

represents an energy input by the deformable body into the fluid. The energy input
by the shape deformations Tshape sets the surrounding fluid into motion and part of
this energy gets utilized by the net locomotion, that is, it gets transformed to Tloc via
the coupling term Tcouple between shape and net locomotion. Note that Tcouple may be
positive or negative. One can argue on physical grounds that in general, starting from
rest with zero vorticity, a non-negative energy gets lost into creating the vortex wake.
That is, part of Tshape gets transferred to the last term in (4.1), namely, to the kinetic
energy of the wake (1/2)

∫
F ψ · ω da, via the coupling term (1/2)

∫
∂B uw × ψ ds. This

means that, from an energy perspective, swimming in potential flow is most efficient
in the sense that the energy input by shape deformations is transferred into energy
utilized by net locomotion without losing energy to the wake. Indeed, this argument
is employed in Wu (1971a, b) where he investigated energy-optimal shape changes.

5. Equations of motion in potential flow
Assume that the shape deformations do not generate vorticity in the fluid such

that, starting with zero vorticity, the flow remains irrotational for all time and both
Fw and Mw are identically zero. This assumption is physically meaningful only when
the actual flow does not separate at the tail. That is, when the velocity of the fluid at
the trailing edge is tangent to the spatial trajectory described by the trailing edge.

In potential flow, the balance laws (3.7) can be rewritten as

d p
dt

= 0,
dπ

dt
= 0, (5.1)

where p = ploc + pshape and π = πloc + πshape . Equations (5.1) are equivalent to the
balance laws derived in Kanso et al. (2005) for a system of articulated rigid links.
To show this, it is convenient to use the body-fixed coordinates X measured from
the body-fixed frame bi whose origin is placed at xo. The potential function can be
rewritten in body coordinates as follows:

φ = ΩϕΩ + V1ϕ1 +V2ϕ2 + ϕshape, (5.2)

where

∂ϕΩ

∂n
= X × n · b3,

∂ϕ1

∂n
= n · b1,

∂ϕ2

∂n
= n · b2 on ∂B. (5.3)
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Express the shape momenta (3.10) in body frame where the components of the normal
vector are given by (5.3),

Πshape =

(∮
∂B

ϕshape

∂ϕΩ

∂n
ds

)
b3,

P shape =

(∮
∂B

ϕshape

∂ϕ1

∂n
ds

)
b1 +

(∮
∂B

ϕshape

∂ϕ2

∂n
ds

)
b2.

(5.4)

Similarly, express the locomotion momenta (3.9) in body frame which, upon using (5.2)
and (5.3), gives

(
Π loc

P loc

)
= �loc

(
Ω

V

)
, �loc =

⎛
⎜⎜⎝

∮
ϕΩ

∂ϕΩ

∂n
ds

∮
ϕΩ

∂ϕ1

∂n
ds

∮
ϕΩ

∂ϕ2

∂n
ds∮

ϕ1
∂ϕΩ

∂n
ds

∮
ϕ1

∂ϕ1

∂n
ds

∮
ϕ1

∂ϕ2

∂n
ds∮

ϕ2
∂ϕΩ

∂n
ds

∮
ϕ2

∂ϕ1

∂n
ds

∮
ϕ2

∂ϕ2

∂n
ds

⎞
⎟⎟⎠ . (5.5)

Note that the two components of the vectors P loc and V occupy the second and
third entries of (Π loc P loc)

T and (Ω V )T, respectively. Also, note that �loc is a
3 × 3 symmetric matrix referred to as the locked inertia matrix. One can readily
verify, by definition and using the rigid transformation (2.8), that P = P loc + P shape

and Π =Π loc + Πshape are related to p and π as follows:

p = RP, π =Π + xo × p. (5.6)

Substitute (5.6) into (5.1) to get that the later can be expressed in body frame in the
form

Ṗ = P × Ω, Π̇ = P × V . (5.7)

These equations have the same form as Kirchhoff equations for the motion of a rigid
body in potential flow and were derived in Kanso et al. (2005) using Hamilton’s
variational principle and a Lagrangian function equal to the kinetic energy (4.2)
of the solid–fluid system (see also Miloh & Galper 1993; Galper & Miloh 1994
and references therein for applications of these equations to bubble dynamics and
swimming problems). When the motion starts from rest, P and Π remain identically
zero throughout the motion, hence the reconstruction equation(

Ω

V

)
= − �−1

loc

(
Πshape

P shape

)
. (5.8)

It is worth noting that (5.7) and (5.8) governing the motion in potential flow can be
thought of in terms of gauge-theoretic methods of geometric mechanics and optimal
control, as in the ‘falling cat’ problem (see Montgomery 1990). Gauge-theoretic
methods were pioneered by Shapere & Wilczek (1987) for swimming at low Reynolds
numbers and have only been applied sparingly since (see, e.g. Kelly 1998; Radford
2003; Kanso et al. 2005).

6. Examples of swimming in potential flow
We investigate the motion of a deformable body undergoing cyclic shape changes

in potential flow (Fw and Mw are neglected).

6.1. Large amplitude shape deformations

The body is assumed to have an elongated geometry in its stretched-out reference
configuration as shown in figure 3(a). It is convenient to write the shape deformations
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(a)

(c)
(b)

Figure 3. The body is assumed to have an elongated geometry in its stretched-out reference
configuration as shown in (a). We investigate two types of large amplitude deformations of
the centreline: flapping (b) and undulating (c). In (a), the centreline is first discretized into
a number of line segments. The normal direction to each line segment of the centreline is
computed as shown. The boundary points are specified along the normal directions at an
offset distance a. The head and tail are semi-circles of radii equal a. To construct (b) and (c),
a deformation is imposed on the discretized inextensible centreline. The boundary points are
obtained using the orthogonality assumption: normal cross-sections to the centreline remain
normal at all time. That is, the boundary points are specified along the (rotated) normal
directions at an offset equal to a.

in body coordinate ((Xc, Yc) of the centreline and (Xshape, Yshape) of the boundary). The
centreline is described by Xc = sc, Yc = 0 (the arclength sc is given by 0 � sc � l = 1)
and the boundary points are described by

X
±
shape = Xc, Y

±
shape = ± a, (6.1)

where ± sign is used to denote the boundary points on both sides of the centreline
and 2a is the body thickness. The head and tail are semi-circles of diameters equal
to the thickness 2a. The boundary of the body is a piecewise continuous curve
whose perimeter and area in the reference configuration are 2l + 2πa and al + πa2,
respectively. This choice of geometry is made for simplicity but the numerical method
proposed below can be used for any prescribed geometry of the deformable body –
in particular, one could use geometry profiles of actual fish.

Within the class of swimming due to transverse deformations of fish body, biologists
identify two types of swimming mechanisms: undulatory motions consisting of a
travelling wave along the fish body and oscillatory or flapping motions of the fish
tail (see Sfakiotakis, Lane & Davies 1999). Further, fish locomotion can be classified
based on the swimming temporal features: periodic swimming characterized by cyclic
repetitive movements or transient movements typically used in rapid starts, escape
maneuvers or turns. In this section, we focus on studying periodic swimming by
prescribing two types of cyclic shape changes Xc(sc, t) and Yc(sc, t) of the centreline:
flapping and undulating. Flapping motions consist of deformations induced by
activating a finite number of joints along the centreline and are similar to those
considered in Kanso et al. (2005) for a three-link body. In particular, we consider
the shape deformations induced by two joints located at positions sc = l1 and sc = l2.
These joints allow relative rotations of the body described by

θ1 = Θ1 cos(2πt), θ2 =Θ2 cos(2πt − α), (6.2)

where θ1 and θ2 are the relative angles at the joints as depicted in figure 3(b), Θ1 and
Θ2 denote the amplitude of flapping and α denotes the phase. Recall that t represents
dimensionless time dictated by t = f τ where f is a flapping frequency (in Hz) and τ

is real time.
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Undulatory motions consist of travelling waves of the centreline similar to those
considered in Wu (1971a) but, unlike Wu’s small amplitude deformations for which
Xc = sc is constant, here both Xc(sc, t) and Yc(sc, t) vary with time (see figure 3c). In
particular, we consider deformations of the centreline of the form

Yc = A cos(2πt − κXc), (6.3)

which represents a wave propagating along the planar body with phase velocity 2π/κ .
The deformations Xc(sc, t) and Yc(sc, t) of the centreline for the flapping and

undulatory motions are completely determined by using (6.2) and (6.3), respectively,
and imposing the inextensibility condition. The corresponding boundary points
Xshape(s, t) and Yshape(s, t) are obtained numerically using the orthogonality assumption
where cross-sections normal to the centreline remain normal at all time (see figure 3).
More specifically, the centreline is first discretized into a number of line segments.
The normal direction to each segment is computed at each time step. The boundary
points are specified along the normal directions at an offset equal to the thickness a

of the body.

6.2. Numerical method

In potential flow, the fluid velocity u = ∇φ is given by the potential function φ, which
can be constructed using (5.2) from the velocity potentials ϕ1, ϕ2, ϕΩ and ϕshape .
The problem of solving Laplace’s equation for the velocity potentials over the fluid
domain F subject to zero velocity at infinity and boundary conditions (5.3) and
∇ϕshape · n|

∂B = V shape · n can be solved numerically using a boundary element method,
also referred to as a panel method. We use the panel method devised by Hess & Smith
(1966) (see also Katz & Plotkin 2001) which utilizes a piecewise-constant distribution
of source singularities over the boundary of the submerged body and computes the
strength of this distribution by imposing appropriate boundary conditions. The use
of source/sink distributions cannot contribute any net circulation around the body
and allows one to ensure a priori that the circulation in the fluid remains zero
at all time. Physically speaking, this fictitious source distribution induces a velocity
field in the fluid that is equivalent to the velocity field resulting from the motion
of the submerged body. The theoretical foundation of such panel methods is based
on reformulating Laplace’s equations as a boundary integral equation, using the
divergence theorem (see, e.g. Moran 1984, chapter 6). As a result, only the boundary
of the submerged body need to be discretized, hence the computational advantages
of such method. Some of the other advantages of this numerical method lies in the
freedom it provides for describing the geometry of the deformable body and that it
can readily accommodate for the presence of vorticity (with bounded support) when
included in the model as done in § 7.

Traditionally, these panel methods are used for rigid bodies where the panels
maintain a fixed length throughout the calculation. The body deformations considered
here may cause the boundary perimeter to vary with time (while enclosing a region
of constant area and maintaining an inextensible centreline). In our calculations, we
fix the total number of panels used to discretize the boundary but allow their length
to change with time (220 panels are used, each of length 0.01 approximately). The
variation of the panel length in time has no effect on the dynamics because the
potential flow only depends on the instantaneous geometry of the deformable body.
We carried several numerical tests on standard examples of an ellipse with variable
major and minor axes to validate our code. When point vortices are included in
the fluid domain as done in § 7, we tested our code using the example of a circle
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Figure 4. Snapshots of the streamlines at t = 0.25 and t = 0.5 corresponding to fluid
motion induced by undulating shape deformations of the form Yc = 0.1 cos(2π(t − 0.8xc)).

interacting with point vortices which admits an analytical solution based on the
Milne–Thompson circle theorem.

For the deformable body examples discussed in § 6.3, we solve for four distinct
source distributions corresponding the four velocity potentials ϕ1, ϕ2, ϕΩ and ϕshape

subject to four sets of boundary conditions: zero velocity at infinity and boundary
conditions (5.3) for ϕΩ, ϕ1, ϕ2, respectively, and ∇ϕshape · n|

∂B = V shape · n for ϕshape .
Figure 4 depicts snapshots of the streamlines corresponding to fluid motion (ϕshape

only) induced by undulating shape deformations of the form Yc = 0.1 cos(2π(t −
0.8Xc)). The body length (that is, the length of the centreline) is normalized to l = 1
and the thickness is set to 2a = 0.1.

6.3. Numerical results and discussion

We compute the net locomotion (β, xo, yo) of the deformable body due to prescribed
shape deformations of two types: flapping and undulating. The deformable body is
assumed to start from rest (zero momentum). The velocity potentials are solved at
each time step using the panel method described above. The shape momenta of (5.4)
and the added mass �loc of (5.5) are then computed and used to obtain the body
velocities in (5.8). A standard fourth-order Runge–Kutta integration scheme with
constant time step is used to integrate (5.8) and obtain (β, xo, yo). For all trajectories
shown in this section, the total integration time is t = 10. The value of a is set to 0.01,
the length l of the centreline is normalized to l = 1.

The net locomotion of the deformable body in the (e1, e2) plane due to prescribed
flapping motion is shown in figure 5. The parameters of the shape deformations are
set to Θ1 = Θ2 = 0.5 and α = π/4, that is, θ1 = 0.5 cos(2πt) and θ2 = 0.5 cos(2πt − π/4).
The trajectories in figure 5 are obtained by varying the position of the joints along
the centreline. Recall that the joints are placed at sc = l1 and sc = l2, which can also
be parameterized by lhead = l1, lmiddle = l2 − l1 and ltail = l − l2, that is, the length of
the front, middle and rear portions of the body, respectively (only two parameters
are needed since the total length l is fixed). The nine depicted cases correspond to{

lhead = 1/3, 1/2, 2/3,

ltail = (l − lhead )/3, (l − lhead )/2, 2(l − lhead )/3
.



Swimming due to transverse shape deformations 139

0

0

–8 –7 –6 –5 –4 –3 –2 –1

0.5

–0.5

–1.0

–1.5

–2.0

(a) (b)

yo vs xo 
0 1 2 3 4 5 6 7 8 9 10

0

–0.1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

β vs t 

Figure 5. Flapping motions. (a) Net locomotion of the deformable body in the (e1, e2). (b)
Rotation β versus time t . The values of a and l are set to a = 0.01 and l = 1. The shape
deformations are θ1 = 0.5 cos(2πt), θ2 = 0.5 cos(2πt − π/4). Nine distinct trajectories are shown
corresponding to: (black lines) lhead =1/2, (medium grey lines) lhead = 1/3 and (light grey lines)
lhead =2/3 while (solid lines) ltail =(l − lhead )/2, (wide dashed lines) ltail = 2(l − lhead )/3 and
(narrow dashed lines) ltail = (l − lhead )/3.

We define the travelled distance as the shortest distance from the initial position at
(0, 0) to the final position along a given trajectory. One observes the following:

(i) For lhead fixed, the travelled distance is maximum for the longest tail.
(ii) For ltail fixed, the travelled distance is maximum for lhead = 1/2.
(iii) The amplitude of β increases as lhead decreases.

These results are consistent with observations of actual fish that use such flapping
motions for swimming (that is, Carangiform and Thunniform swimmers). These fish
typically use the last third of their body length to flap (of which the tail occupies the
larger portion) while most of their body mass is concentrated in the anterior part in
order to minimize the sideways oscillations β (see, e.g. Sfakiotakis et al. 1999).

The effect of the phase α on the net locomotion is now examined. As before, the
amplitude of the shape deformations is set to Θ1 =Θ2 = 0.5. The prescribed shape
angles θ1 = 0.5 cos(2πt) and θ2 = 0.5 cos(2πt − α) trace elliptic closed curves in the
(θ1, θ2) plane. These closed curves are traced in the counter-clockwise direction. The
curves corresponding to α = 0 and α = π are bounded line intervals along θ2 = θ1 and
θ2 = −θ1, respectively. For α = π/2, θ1 and θ2 trace a circle in the (θ1, θ2) plane. For all
other α, θ1 and θ2 trace ellipses which are symmetric with respect to reflections across
the axes θ2 = θ1 and θ2 = − θ1. That is, the shape curves are ellipses whose major axes
form angles π/4 or 3π/4 with the θ1-axis. Their semi-axes lengths are dictated by the
value of α. The phase angle α is varied from 0 to π by increments of �α = π/24.
Three different joint positions are examined corresponding to⎧⎨

⎩
lhead = 1/3, ltail = 1/3
lhead = 1/2, ltail = 1/4
lhead = 2/3, ltail = 1/6

.

A plot of the travelled distance versus α is shown in figure 6(a) for the three
parameter sets. Figure 6(b) shows the mean values of the energy input Tshape due to
shape deformations (solid lines) and the energy associated with the net locomotion Tloc

(dashed lines). Figure 6(b) reinforces the argument presented in § 4 that, in potential
flow, most of the energy input by the shape deformations is transformed into energy
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Figure 6. Flapping motion. (a) travelled distance versus phase angle α. (b) Mean values
of the energy input Ts (solid lines) and energy associated with the net locomotion Tloc

(dashed lines) versus phase angle α. Three distinct cases are analysed corresponding to: (black
lines) lhead = 1/2, ltail = 1/4, (medium grey lines) lhead =1/3, ltail = 1/3 and (light grey lines)
lhead = 2/3, ltail = 1/6.

used by the body locomotion. It is worth clarifying here that the term locomotion
is used to signify a rigid motion (displacement and rotation) of the body. However,
not every shape deformation results in a useful rigid motion – for example, it is clear
from figure 6(a) that, for α = 0 and α = π, the distance travelled over 10 cycles (or
periods) of shape deformations is zero while figure 6(b) shows that the mean value
of Tloc is not zero. For these special cases, the body undergoes a rigid motion (hence
the non-zero Tloc) but such that it returns to its initial position and orientation after
a complete cycle of shape deformations (hence the zero travelled distance or zero
net locomotion). This is due to the reversibility of motion in potential flow when
reversing the boundary conditions, that is, time reversibility of the employed model.
This reversibility property in potential flow is analogous to the reversibility in Stokes’
flow described in Purcell (1977). Purcell states that if a body changes its shape then
goes back to its original shape by going through the sequence of shape motion in reverse,
everything reverses just fine. Time makes no difference – only configuration. This is also
true in potential flow. The speed at which the shape deformations take place is
not important, only the pattern of shape motion matters. The travelled distance is
invariant to time re-parameterization. It also follows from this time reversibility that
the deformable body moves to the left in the (e1, e2) plane for 0 � α � π while it
moves to the right symmetrically about the origin when the phase is set to −α. For
this reason, we only show the results corresponding to 0 � α � π.

The value of α corresponding to the maximum travelled distance is highlighted
in figure 6(a) for each of the three depicted cases. The body for which
lhead = 1/2, ltail = 1/4 travels longer distance than the other two bodies for almost
all α and reaches its maximum travelled distance at αc = 5π/24. The body for which
lhead = 1/3, ltail = 1/3 (that is, body with three equal segments) reaches its maximum
travelled distance at αc = π/4 and the third body at αc = 7π/24. One could think of
the values of αc as the optimal phase values for the corresponding body geometries
and class of shape deformations, namely, θ1 = Θ1 cos(2πt) and θ2 = Θ1 cos(2πt − α).
In figure 7, we plot the shape cycles corresponding to αc. These optimal cycles are
ellipses whose major axes form an angle π/4 with the θ1-axis. This is consistent with
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Figure 7. Flapping motion. Optimal shape cycles in the (θ1, θ2) plane corresponding to
the maximum travelled distance in figure 6(a): (black line) lhead =1/2, ltail = 1/4 and
αc = 5π/24; (medium grey line) lhead = 1/3, ltail = 1/3 and αc = π/4; and (light grey line)
lhead =2/3, ltail = 1/6 and αc = 7π/24. The deformable body moves to the left in the (e1, e2)
plane when the depicted shape trajectories are traced in the counter-clockwise direction and
to the right otherwise.
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Figure 8. Undulatory motion. (a) Travelled distance versus wavelength κ . (b) Mean values of
the energy input Tshape (solid lines) and energy associated with the net locomotion Tloc (dashed
lines) versus wavelength κ .

the findings in Tam & Hosoi (2007) where the optimal shape patterns for Purcell’s
three-link swimmer in Stokes’ flow are ellipse-like curves with major axes of symmetry
at an angle π/4 with the θ1-axis. The question whether this is a preferred direction
across the whole range of Reynolds number from Stokes’ to Potential flow remains
open.

The trajectories for the net locomotion (not shown) of the deformable body in the
(e1, e2) plane due to prescribed undulatory motions are similar to those obtained in
figure 5 for flapping motions. A plot of the travelled distance versus the wavelength
κ is shown in figure 8(a) where κ is varied from 0 to 1.5 and A is set to 0.1. The
undulating body achieves a maximum travelled distance when κ = 0.65(2π) = 1.3π.
In figure 8(b) there is a depiction of the mean values of the energy input Tshape due to
shape deformations (solid lines) and the energy associated with the net locomotion
Tloc (dashed lines) versus the wavelength κ . Similarly to figure 6(b), most of the energy
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Figure 9. A vortex pair is shed periodically when the tail reaches its maximum and
minimum flapping angle.

input by Tshape is transformed into energy used by Tloc . One should be careful not to
compare the case when α = 0 in figure 6 to that when κ = 0 in figure 8. For α = 0
(and π), the body is flapping and the energy input is non-zero but for κ =0, there is
no shape deformations (yc = 0) and no locomotion. The case where the body behaves
as a rigid rod flapping against the fluid does not correspond to κ = 0 and is not
represented in figure 8. This case results in zero net locomotion (but non-zero energy)
owing to the reversibility property discussed above. To conclude this discussion, note
that there is a common belief that the flapping motions evolved from the undulatory
ones as a more efficient mechanism for locomotion (see Sfakiotakis et al. 1999).
The optimal trajectories in figures 6 and 8 show that, indeed, the flapping case with
lhead = 2/3 (consistent with Carangiform and Thunniform swimmers) requires the least
energy per distance travelled. Note that one could think of the undulatory motion as
a special case of the flapping motion in the limit when the number of joints (or links)
goes to infinity. A more rigorous comparison of the efficiency of locomotion between
the flapping and undulating case could then be sought.

7. Swimming due to dipole shedding
We propose a simple model to emulate the locomotion of a deformable body under

the effect of its own vortex wake. The proposed model is not intended to study the
details of vortex shedding (which is a complicated event involving flow separation
at the tail) but focuses on the effects of the shed vortices on the net locomotion.
The model consists of a body (say having the same geometry as in § 6) allowed to
undergo shape deformations such that a new vortex pair (a dipole) is ‘shed’ from
the tail (i.e. introduced into the flow) each time the tail reaches its minimum and
maximum flapping angle (see figure 9) while old vortex pairs are removed from the
flow as they move away from the body. The introduction of vortex pairs emulates
the vortices shed periodically due to the flapping motion of the body. The removal of
vorticity emulates the diminishing effect of the vortices far away from the body. The
dipole model is chosen for two reasons: (i) there is experimental evidence that fish
and flapping airfoils shed a dipole every half cycle of their oscillation (see, e.g. Tytell
2004; Tytell & Lauder 2004) and (ii) it guarantees that no circulation is introduced
into the fluid domain, thus satisfying Kelvin’s circulation theorem.

Between two consecutive shedding events, the system corresponds to a deformable
body dynamically interacting with 2N point vortices of strength Γk (k = 1, . . . , 2N)
such that the sum of their strength is zero. Let the position vectors of the point
vortices be denoted by xk in the inertial frame {ei} and Xk in the body-fixed frame

{bi}. The vorticity ω is given by a delta distribution ω =
∑2N

k=1 Γkδ(x−xk)e3. Substitute
this expression for the vorticity into (3.7) to get that the latter can be rewritten in the
same convenient form as shown in (5.1) but with the total momenta of the body–fluid
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system given by

p = ploc + pshape +
d

dt

∮
∂B

x × (n × uw) ds +
∑

Γk xk × e3,

π = πloc + πshape − 1

2

∮
∂B

‖x‖2 (n × uw) ds − 1

2

∑
Γk(xk · xk)e3.

(7.1)

The linear and angular momenta of the body–fluid system are assumed to remain
constant during vortex shedding, which takes place instantaneously when the tail
reaches its maximum flapping amplitude. That is, at the time of the shedding tshedding

the body–fluid momenta immediately after the vortex shedding are equal to those
immediately before the shedding,

p|t+shedding
= p|t−

shedding
, π|t+shedding

= π|t−
shedding

. (7.2)

Equations (7.2) are used to determine the jump in the translational and rotational
velocity of the body at each shedding event. Note that this model for vortex shedding
is analogous to the perfectly elastic impact model between colliding bodies where
the impact is assumed to take place instantaneously and the total momentum of
the colliding bodies is assumed to be constant during the impact. Theoretically, one
could introduce, similar to the coefficient of restitution concept in colliding bodies, a
parameter that accounts for the change in the momentum of the solid–fluid system
during a shedding event.

In order to close the model, one needs to provide the equations governing the
motion of the vortices between two consecutive shedding events. This closure is given
by the fact that point vortices are advected by the flow, hence,

dxk

dt
= u|xk

, (7.3)

where the velocity u at the point vortex xk is due to the motion of the body (both
shape deformation and net locomotion) and the presence of the other point vortices
(excluding the effect of a point vortex on itself).

It is worth noting that, when transformed to body frame, (5.1), (7.1) and (7.3) are
consistent with the balance laws derived in Shashikanth et al. (2002) and Kanso &
Oskouei (2008) for a rigid body interacting with point vortices. In the rigid-body case,
pshape and πshape as well as P shape and Πshape are identically zero.

In order to isolate the effect of the vortex shedding on the net locomotion, we
consider a class of shape deformations that cannot produce a net displacement in the
absence of vortex shedding. In particular, only the tail of the body is allowed to flap
such that

θ =Θ cos(2πt), (7.4)

in contrast to (6.2) where two shape angles θ1 and θ2 are varied with time. The
deformable body is assumed to start from rest (zero momentum). The velocity
potentials subject to zero velocity at infinity and proper boundary conditions at the
body’s boundary are computed at each time step using the panel method described
in § 6. The main difference in the numerical method is that, here, one has to account
for the presence of the vortex singularities in the flow when computing the strength
of the source singularity distribution over the boundary of the submerged body. The
shape momenta of (5.4) and the added mass �loc of (5.5) are then computed. Also, the
tangential component of the velocity uw is computed and used to evaluate the integral
quantity in (7.1). At tshedding , (7.2) is used to compute the jump in the body’s linear and
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Figure 10. Locomotion due to the effect of dipole shedding: (a) the motion of the body in
the (e1, e2) plane; (b) the variation of β with respect to time.
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Figure 11. Zoom in on figure 10(a): a dipole is shed periodically when the tail reaches its
maximum and minimum flapping angle as depicted here for two consecutive shedding events.
The shed dipole moves away from the body as the body moves to the left.

angular velocity. Between two consecutive shedding events, a standard fourth-order
Runge–Kutta integration scheme with constant time step is used to integrate (5.1)
(with p and π given by (7.1)) and (7.3) and to obtain (β, xo, yo) and xk ≡ (xk, yk).

In figure 10–12, the total integration time is t =2. As before, the length l of the
centreline is normalized to l = 1 and the value of a is set to 0.01. The flapping
amplitude is chosen to be Θ = 0.5 rad. The dipole strength is set to Γ = ± 1. At the
time that a new dipole is shed, the old dipole is removed from the fluid instantaneously
such that, at any instant in time, the body is interacting with only one vortex pair
(N = 1). Figure 10 depicts the net motion of the body in the (e1, e2) plane under the
effect of vortex shedding. In figure 11, we zoom in on a portion of the trajectory shown
in figure 10(a) on which we superimpose the body’s configuration at two consecutive
shedding events and show the trajectories traced by the shed dipoles. Clearly, the shed
dipoles move away from the body as the body swims to the left. We tested various
parameter values for Γ (not shown) and obtained similar behaviour to that shown
in figures 10–12 for a range of values. Outside this range, the vortices are either too
weak to move away from the body or too strong to allow the body to swim away
(the body gets absorbed by the vortices). Fish also seem to be able to manipulate
the intensity of the shed vortices within limits dictated by their muscles strength.
Figure 12 depicts the linear and angular velocities of the body as they vary with time.
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Figure 12. Linear and angular velocities with respect to time. Note the jump in the velocities
at each shedding event. The average velocity V1 is negative while the average of V2 is almost
zero, causing the body to undergo a net displacement in the negative e1-direction as shown in
figure 10(a). Also, the average of Ω is zero which means that, while the body oscillates as it
flaps, it undergoes no net reorientation as shown in figure 10(b).

Note the jump in the velocities at each shedding event. Also note the periodicity of
these velocities as a function of time. This periodicity seems to suggest that the net
locomotion may be described as a gauge over cyclic variations in shape. In general, the
gauge-theoretic methods of geometric mechanics used to analyse motion in potential
flow (Kelly 1998; Radford 2003; Kanso et al. 2005) may not be always applicable in
the presence of vorticity. Indeed, if the fish flaps once or twice then stops flapping,
it continues to interact dynamically with the vortices present in the fluid but these
vortices drift away from the body of the fish which, in the mathematical modelling,
gives rise to what is known as dynamical systems with drift. However, in the case of
sustained swimming considered here, the fish is continuously shedding vortices with
every half cycle of its shape deformation. One may then argue that the wake is also
changing cyclically and hence, one may apply gauge-theoretic methods to analyse the
net locomotion. These methods are particularly useful in studying the dependence of
the system on parameters such as the amplitude/frequency of shape oscillations and
strength/relative positions of dipoles and addressing problems of control and motion
planning. These issues will be addressed in a future work.

8. Summary
Balance laws are derived for the swimming of a deformable body due to prescribed

shape deformations and the wake vorticity. The derived equations can be viewed as
a generalization of Lighthill’s slender body theory and, in the potential flow case,
reduce to the model developed in Kanso et al. (2005). The effect of cyclic shape
changes on the locomotion of a deformable body in potential flow is examined
via a number of examples. In particular, we compute optimal parameter values
within a class of flapping motions and a class of undulatory motions. A direct
comparison of the energy input per total distance travelled supports a common belief
that flapping motions constitute a more efficient mechanism for locomotion than
undulatory motions. The effect of a vortical wake on the net locomotion is modelled
using a simplified approach where pairs of point vortices are shed periodically from
the tail of the deformable body. In sustained/periodic swimming, fish continuously
shed vortices of opposite strength that typically pair up to move away from the
swimming fish whereas far downstream (i.e. the far-wake), viscous effects effectively
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Figure 13. Lighthill’s slender body.

diminish the presence of the vortices. The swimming motion is thus most affected by
the most recently shed vortices. Our models capture exactly this aspect and show that
both the shed vortices and the reaction forces (proportional to the added mass effect)
play a role in swimming due to transverse shape deformations. Future extensions
of this work will include more accurate models of vortex shedding and of decay of
vortices due to viscous effects. We are also working on generalizing these methods
to study the coupled dynamics of multiple submerged bodies and their wakes in an
effort to model fish schooling.
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Appendix. Lighthill’s slender body theory
Lighthill’s reactive force theory for the swimming of a slender body can be viewed

as a special case of (3.7). To show this, first consider the setting employed in Lighthill
(1975, chapter 5) of a ‘spinal cord’ of length l (which corresponds to the centreline
of figure 1) undergoing large amplitude deformations (see figure 13). The normal
and tangential components of the velocity vshape of the centreline due to shape
deformations are given by

vsn = vshape · n =
∂yc

∂t

∂xc

∂sc

− ∂xc

∂t

∂yc

∂sc

,

vst = vshape · t =
∂xc

∂t

∂xc

∂sc

+
∂yc

∂t

∂yc

∂sc

.

(A 1)

Lighthill’s theory lays principal emphasis on the reactive forces between the body
and the volume of fluid in contact with it. These reactive forces are proportional
to the added mass of fluid which acquires momentum through shape deformations.
According to Lighthill, the essential property characteristic of an elongated body is
that the added mass due to vsn , that is, to deformations in the direction normal to
the centreline, is large whereas the deformations tangential to the centreline have
negligible added mass. The momentum pshape of (3.10) can then be approximated by

pshape =

∫ l

0

mvsnn dsc (A 2)
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where m is the added mass per unit length of the centreline due to shape deformations
only. In general, m(sc, t) is a function of arclength sc and time t (m depends on ϕshape).
In Lighthill (1975, chapter 4), the amplitude of the shape deformations is assumed to
be steady in time and the approximate expression m = (1/4)πρf d2, where ρf is the
fluid density (here normalized to one) and d is the depth of the cross-section, is used.

Lighthill avoided solving for the complex wake dynamics by considering the
momentum balance in a control volume containing the deformable body and bounded
by a plane attached at its trailing edge. This allows one to obtain an approximate
expression for the rate of change of the momentum in the wake or Fw

Fw =

[
−mvsnvst n − 1

2
mv 2

sn t
]

sc = l

. (A 3)

Substitute (A 2) and (A 3) in the balance of linear impulse of (3.7) to obtain the total
forces acting on the slender body and causing it to achieve a net locomotion

F = − d

dt

∫ l

0

mvsnn dsc −
[

−mvsnvst n − 1

2
mv 2

sn t
]

sc = l

(A 4)

Equation (A 4) is exactly the main balance law in Lighthill’s slender body theory
and can be viewed as a special case of the balance of linear impulse in (3.7).
Equations (3.7) are more general in the sense that they account for the dynamic
coupling of the rotational and translational motions whereas Lighthill’s slender body
theory focused only on the translational motion and neglected the rotational effects
induced by the shape deformations on the net locomotion. Further, (3.7) hold in
two-dimensional and three-dimensional while Lighthill’s theory is specific to slender
bodies as manifested by the approximate expressions for pshape and Fw . Our approach,
instead of using such approximate analytical expressions, consists of employing (3.7)
in conjunction with a numerical method that accurately computes pshape and πshape as
well as Fw and Mw .
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